A phase I/II study of fosbretabulin in combination with everolimus in neuroendocrine tumors that have progressed after at least one prior regimen for metastatic disease.

Aman Chauhan1, Susanne Arnold1, Stacey A. Slone2, Heidi Weiss2, Heather Flynn3, Lowell Brian Anthony1; 1: University of Kentucky, Lexington, KY, 2: Biostatistical Core, Markey Cancer Center, 3: Clinical Research Office, Markey Cancer Center, University of Kentucky, Lexington, KY; University of Kentucky.

Fosbretabulin

Fosbretabulin is a novel anti-cancer agent that displays potent and selective toxicity towards tumor vasculature. It is a synthetic, water-soluble, phosphorylated prodrug of the natural product Combretastatin A4 (CA4), which was originally isolated from the bark of the South African bush willow, Combretum caffrum. It is the lead compound in a class of agents termed vascular disrupting agents (VDAs).

Extensive necrosis with a viable rim of neoplastic cells at the tumor periphery is a characteristic feature of tumors treated with fosbretabulin or other VDAs. A preclinical study in a transgenic mouse model of insulinoma showed a significant decrease in insulin compared to control, with a reduction in the size of tumor along with tumor necrosis and an increase in markers of apoptosis. An additional preclinical study in a rat model of prolactinoma has showed promising activity. A Phase 1 study of fosbretabulin monotherapy in NETs established safety in this population and showed potential efficacy in reducing disease biomarkers and alleviating symptoms.

Study Objectives

- **Primary Objectives**: To establish the maximum tolerated dose of the combination of everolimus and fosbretabulin in neuroendocrine tumors (Grades 1-3) that have progressed after at least one prior regimen for metastatic disease.

- **Secondary Objectives**: To establish the safety profile of the combination of everolimus and fosbretabulin in this patient population. To observe and record antitumor activity. Although the clinical benefit of fosbretabulin plus everolimus has not been established, the intent of offering this treatment is to provide a possible therapeutic benefit, and thus the patient will be carefully monitored for tumor response and symptom relief in addition to safety and tolerability.

Study Design

This is an investigator initiated, single-center, open label, phase I study involving grade I-III gastroenteropancreatic neuroendocrine tumors, consisting of a dose escalation. Part A followed by an expansion cohort Part B.

<table>
<thead>
<tr>
<th>Dose Combinations</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everolimus (mg/day)</td>
<td>5</td>
<td>5</td>
<td>7.5</td>
<td>7.5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fosbretabulin (mg/kg)</td>
<td>Every 3 weeks</td>
<td>Every 1 week</td>
<td>Every 3 weeks</td>
<td>Every 1 week</td>
<td>Every 3 weeks</td>
<td>Every 1 week</td>
</tr>
</tbody>
</table>

Current Status

Open for accrual: April 2017
Currently we are treating patients in cohort D6
Once MTD is established, we will start Phase II.

Why Everolimus?

Everolimus has a longer half-life (30 hours) and slows tumor progression, while also having anti-angiogenic effects. The combination of these two drugs, each with different mechanisms of action, may inhibit tumor growth without additional toxicities.

Sponsors: MCC and Mateon Pharmaceuticals

Fosbretabulin causes short-lived (4-8 hour) ischemia that leads to extensive tumor necrosis. Everolimus has a longer half-life (30 hours) and slows tumor progression, while also having anti-angiogenic effects. The combination of these two drugs, each with different mechanisms of action, may inhibit tumor growth without additional toxicities.