Neuroendocrine (NE) cancers originate from select secretory cells of the body’s various endocrine structures. Some patients develop two or more NE cancers, a syndrome termed multiple endocrine neoplasia (MEN). DNA sequencing has lead to breakthroughs in identification of the genes mutated in four types of familial MEN syndromes. Mutations in the protein menin are associated with MEN1. Mutations in the receptor tyrosine kinase RET are linked to MEN2 and MEN3. The cyclin-dependent kinase inhibitor, CDKN1B, is mutated in MEN4. However, a large percentage of NE cancers are sporadic and a high percentage of these do not harbor menin, RET, or CDKN1B mutations. Cyclin-dependent kinase 5 (Cdk5) is the regulator of an important tumorigenic signaling network in medullary thyroid carcinoma, one type of NE cancer. As NE cancers share many common features, we asked 1) if Cdk5 plays a role in other types of NE cancers, 2) if biomarkers of Cdk5 driven tumors can be identified, and 3) if inhibitors targeting Cdk5 are effective as therapeutics in vivo.

Cdk5 pathway components are present in multiple types of human NETs and growth of human NE cell lines is dependent on Cdk5 activity. Using phosphoproteomic analysis and cell-based growth screens a set of potential downstream targets of Cdk5 was identified. Phosphorylation state-specific antibodies were generated to interrogate these targets in vivo. Phosphorylation of these proteins is dependent on Cdk5 activity in cell lines and elevated in mouse tumors generated by transgenic expression of Cdk5 activators, validating the phosphosites as biomarkers of Cdk5 activity. Additionally, these biomarkers are present in a subset of tumors derived from human patients. Preclinical studies in three NE mouse models that contain biomarkers of aberrant Cdk5 activity demonstrate that treatment with Cdk5 inhibitors blocks tumor growth.

Aberrant activation of Cdk5 drives tumor growth in a subset of human NE patients. Biomarkers of Cdk5 activity, identified here, could potentially be utilized clinically to distinguish this group of patients as expected responders to Cdk5-targeted therapies.


Funding

• American Cancer Society Research Scholars Grant for the MEN2 Thyroid Cancer Consortium to J.A.B.
• American Cancer Society Postdoctoral Fellowship to A.M.C.
• Dedman Family Scholar Award to S. C. O.
• American Thyroid Association Research Grant to S. C. O.

Acknowledgements

• We thank Herbert Chen, Kimmo Hatanpaa, Karel Pacak, Bruce Robinson, and Eugene Woltering for human tumor tissues.
• We thank Melanie Cobb, Hans Ghashayee, John Minna, Roswitha Pfragner, and Courtney Townsend for neuroendocrine cell lines.
• We thank Cell Signaling Technologies for LC-MS/MS analysis.

References
Coupled Diagnostic-Therapeutic Regimen for Neuroendocrine Cancer

Figure 1. Cdk5 pathway components are present in human neuroendocrine tumors.

Human neuroendocrine tumors were fixed in 10% formalin, embedded with paraffin, and analyzed by IHC; scales bars = 50 µm.

Figure 2. Cdk5 promotes tumor cell growth.

A. Immunoblot of various NE cell lines. B. Cells were treated with 0.3 µM Indo A (4/5i) or 0.3 µM Indo B (4i) for 2-6 days. Cell number was assessed using CyQuant Direct Proliferation Assay.

C. SEM of NE cells treated with DMSO (Control) or Cdk5 inhibitor (Cdk5i).
Figure 3. Identification of potential tumorigenic phosphoprotein signaling pathways.

A. Schematic of bi-transgenic mouse model of MTC and protocol for generation of growing and arrested tumors. B. Heat map comparing phosphopeptides detected by LC-MS/MS in growing vs. arrested mMTC tumors.

C. Diagram of short interfering peptides (SIPs) designed to inhibit phosphorylation of candidate proteins. D. High throughput screen using SIPs to identify phosphoproteins required for NE cell survival. Cells were treated with 30 µM SIPs for 2-6 days. Cell number was assessed using CyQuant Direct Proliferation Assay.
Figure 4. Phosphoproteins are biomarkers of Cdk5 dependent NE cancers. A. Phosphoproteins in growing (G) and arrested (A) mouse MTC tumors. B. Phosphoproteins in PHEO cells treated with increasing concentrations of Indo A (Cdk4/5i). C. Phosphoproteins in SK cells treated with 0.3% DMSO (C), 0.3 µM Indo A (4/5i), or 0.3 µM Indo B (4i) for 4 hours. D. Phosphoproteins in TT cells treated with 0.3% DMSO (C), 0.3 µM Indo A (4/5i), or 0.3 µM Indo B (4i) for 4 hours. E. Heat map of phosphoproteins in normal human thyroid tissue and MTC tumors.

Figure 5. Targeted Therapy. A. MRI of NSE-p25 animals treated with vehicle (Control) or 20 mg/kg BW Indo A (CDK4/5i). B. Quantitation of tumor growth from MRI of animals treated with vehicle (Control), 10 mg/kg BW Indo A, 20 mg/kg BW Indo A, or 30 mg/kg BW Indo A. C. Western of plasma from animals in A and B. D. Photos of human TT xenograft animals treated with vehicle (Control) or 20 mg/kg BW Indo A (Cdk4/5i). E. Quantitation of tumor growth from caliper measurement of animals treated with vehicle (Control), 10 mg/kg BW Indo A or, 20 mg/kg BW Indo A. F. Western of plasma from animals in D and E.