Background

RABL6A regulation of Myc expression and activity promotes cell cycle progression and survival of PNET cells.

- **RABL6A** is a novel GTPase required for pancreatic NET (PNET) cell proliferation and survival.
- RABL6A promotes G1-S progression in PNETs through retinoblastoma (Rb1) tumor suppressor inactivation, but other unidentified pathways also contribute to RABL6A-mediated cell growth.
- Microarray data suggested Myc activation might be involved. Given the central role of Myc in cancer signaling, this was investigated in role of RABL6A-driven PNET cell proliferation and survival.
- These studies reveal RABL6A is a new essential regulator of Myc expression and activity, advancing our understanding of Myc regulation and strengthening the potential value of therapeutically inhibiting RABL6A function in PNET patients.

Hypothesis

RABL6A regulation of Myc expression and activity promotes cell cycle progression and survival of PNET cells.

Methods

- **Introduction**
 - Understanding of molecular mechanisms underlying neuroendocrine tumor (NET) pathogenesis is needed to improve treatment of NET patients.
 - RABL6A is a novel GTPase required for pancreatic NET (PNET) cell proliferation and survival. We found that RABL6A promotes G1-S progression in PNETs through retinoblastoma (Rb1) tumor suppressor inactivation, but other unidentified pathways also contribute to RABL6A-mediated cell growth.
 - Microarray data suggested Myc activation might be involved. Given the central role of Myc in cancer signaling, this was investigated in role of RABL6A-driven PNET cell proliferation and survival.
 - These studies reveal RABL6A is a new essential regulator of Myc expression and activity, advancing our understanding of Myc regulation and strengthening the potential value of therapeutically inhibiting RABL6A function in PNET patients.

- **Results**
 - **Figure 2:** Microarray analyses predict RABL6A loss impairs Myc pathways. A) Gene expression alterations in hyperplasia, Castrated, and ER-treated xenografts in tissues vs. control xenografts. B-D) Heat map of microarray data shows that RABL6A depletion in BON cells results in altered expression of many genes involved in Myc signaling, including Myc itself. Red, relatively increased expression; blue, relatively decreased expression.

- **Figure 3:** Loss of RABL6A downregulates endogenous Myc mRNA and protein expression. A) Western blot analysis of indicated proteins in total control and RABL6A-depleted BON-1 and G2P1 cells. Relative cell numbers from experimental samples shown below. B) Quantitative RT-PCR of Myc mRNA levels in control and RABL6A-depleted BON-1 cells. n=3 C) Dot blot analysis of indicated proteins in BON-1 and control cells. n=3 D) Immunoblot analysis of indicated proteins in BON-1 and control cells. n=3

- **Figure 4:** Myc expression rescues the cell cycle arrest phenotype caused by RABL6A loss and dictates sensitivity to JQ-1. Analyses performed in control and RABL6A-depleted BON-1 cells expressing vector (VEG) or the shRNA inducible Myc-ER (Myc-ER) cDNA. A) Flow cytometric analyses of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. B) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. C) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. D) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. E) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. F) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells.

- **Figure 5:** RABL6A affects DNA damage checkpoint signaling. A) Cell cycle arrest measured by 5-bromo-2-deoxyuridine incorporation (EdU) in BON-1 cells following RABL6A knockdown (KD1, KD2). B) Flow cytometric analyses of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. C) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. D) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. E) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells. F) Flow cytometric analysis of cell cycle populations by propidium iodide (PI) staining in control and Myc-ER cells.