Correlation of 68Ga-DOTATOC Uptake and Pathologic Grade in Neuroendocrine Tumors

Hilary Chan;1 Christian Moseley;2 Li Zhang, PhD;1 Emily K. Bergsland, MD;1 Miguel Hernandez Pampaloni, MD;1 Katherine Van Loon, MD, MPH;1 Thomas A. Hope, MD1

1University of California San Francisco, San Francisco, CA; 2Florida Atlantic University, Boca Raton, FL

Introduction

68Ga-DOTATOC is a somatostatin analog used to detect neuroendocrine tumors (NETs). The Ki-67 protein (Ki-67) is a marker of cell proliferation and has been established as both a diagnostic and prognostic factor in the treatment of NETs. In general, tracer uptake in somatostatin receptor (SSTR) PET is higher in lower grade NETs (1). Past studies have studied the correlation between Ki-67 proliferation index (Ki-67 PI) and DOTATATE maximum standard uptake values (SUV$_{\text{max}}$) and yielded mixed results (2).

We aimed to match the lesions biopsied to the lesions observed on 68Ga-DOTATOC to establish a correlation between Ki-67 PI and SUV$_{\text{max}}$ in the same lesion.

Methods

We retrospectively reviewed 238 consecutive DOTATOC PET scans performed at UCSF during 2014-2016. Patients were excluded if:

• No pathology was available;
• Tumors were fully resected prior to imaging;
• A correlate lesion between pathology and imaging could not be identified; or
• DOTATOC PET scan was >365 days from date of biopsy.

A total of 90 patients had pathology available, and 54 patients had Ki-67 PI available. SUV$_{\text{max}}$ from biopsied lesions was correlated with Ki-67 PI using the Pearson correlation coefficient.

Results

For 110 lesions from 90 patients with pathology available, DOTATOC PET had 92.7% sensitivity and 100% specificity (102 true positives; 8 false negatives) for detection of NETs. In 64 patients, we were able to obtain Ki-67 PI values for 63 lesions for which we had corresponding SUV$_{\text{max}}$ information. There was no correlation between Ki-67 PI and SSTR-PET uptake (r=-0.169, $p=0.252$). There were 26 grade 1 lesions (mean Ki-67 PI 1.1%; mean SUV$_{\text{max}}$ 40.6), 31 grade 2 lesions (mean Ki-67 PI 8.0%; mean SUV$_{\text{max}}$ 34.4), and 6 grade 3 lesions (mean Ki-67 PI 32.9%; mean SUV$_{\text{max}}$ 13.8).

Conclusion

Our analysis demonstrates high sensitivity and specificity in DOTATOC PET imaging for detection of NETs and lack of correlation between Ki-67 PI and SUV$_{\text{max}}$ in NETs. In Grade 1 and 2 lesions SSTR-PET provides independent information from Ki-67 PI that can help guide clinical management and treatment.

References

1) Hofman MS, Lau WFE, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500-516.

2) Kayani I, Borner JD, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112(11):2447-2455.