MK-2206, a Novel Akt Inhibitor, Suppresses Medullary Thyroid Cancer Proliferation Independent of RET

Jocelyn Burke, MD, Logan Schlosser, April Harrison, BS, Muthusamy Kunnimalaiyaan, PhD, Herbert Chen, MD, FACS

Endocrine Surgery Research Laboratories, Department of Surgery
University of Wisconsin, Madison, WI

Introduction

Medullary thyroid cancer (MTC) is a neoplasm arising from calcitonin-producing parafollicular C cells. It is associated with a lower overall survival rate than well-differentiated epithelial thyroid cancers, and, although it represents only 5% of all thyroid cancers, it accounts for more than 13% of deaths from thyroid cancer. Many new therapies proposed for MTC target the RET protein, but the phosphoinositide-3-kinase (PI3K)/Akt pathway upregulation has also been linked to tumor growth in many cancer cell lines. Inhibition of the PI3K/Akt leads to growth suppression in multiple tumor types, including MTC. MK-2206 is a novel orally administered compound that allosterically inhibits Akt phosphorylation at serine 473 and threonine 308 residues. A phase 1 trial showed it can lead to growth suppression in multiple tumors, including MTC. MK-2206 is a novel orally administered compound that allosterically inhibits Akt phosphorylation at serine 473 and threonine 308 residues. A phase 1 trial showed it can be administered safely to humans at clinically effective doses.

Results

Treatment with MK-2206 inhibits MTC-TT cell growth. MTT cellular viability assay demonstrates a dose- and time-dependent reduction in TT cell growth over 8 days. All represented doses are MK-2206 in cell media.

![Graph showing MTT cellular viability assay results](Image)

Mechanisms of Growth Suppression:

A) Increasing doses of MK-2206 reduce phosphorylation at the serine 473 residue of Akt, with more limited reduction at threonine 308. Levels of total Akt protein remain stable with treatment. B) MTC cells show a dose-dependent decrease in production of ASCL1, with a marginal increase in phosphorylation at serine 473. ASCL1 levels suggest no change in cell cycle signaling. C) Total RET protein levels are stable with MK-2206 treatment. Select phosphorylation residues actually increase with treatment, indicating RET activity is not blocked by MK-2206 treatment.

![Western Blot images showing Akt and RET phosphorylation](Image)

Conclusions

- MK-2206 inhibits Akt in medullary thyroid cancer cells, leading to reduction in cell growth.
- Mechanisms are separate from the RET pathway. MK-2206 may be a treatment option for MTCs resistant to RET inhibitors.
- MK-2206 is easy to administer to humans, has been vetted in phase 1 trials, and thus could transition to phase 2 trials once its efficacy is proven for MTC treatment in vivo.

Acknowledgements

- Merck corporation for providing MK-2206
- NIH T32 Research Grant in Surgical Oncology CA090217
- American College of Surgeons Resident Research Fellowship

References