Multivariate analysis of progression-free survival in the CLARINET study of lanreotide depot/auto/peg-interferon alpha-2b versus placebo in neuroendocrine tumors

Edwin M. Wolin MD,1 Martyn E. Caplin DM,2 Mariannne E. Pavel MD,2 Jarosław B. Cwicka MD PhD,2 Alexandra T. Phan MD,4 Markus Raderer MD,2 Eva Sedláčková MD,6 Guillaume Cadot MD PhD,8 Jaime Capdevila MD,8 Lucy Wall MD,10 Guido Rindi MD PhD,11 Nilton Liyanage MSc,12 Edna Gomez-Pananzani MD PhD,13 on behalf of the CLARINET Study Group

1Markey Cancer Center, Lexington, KY, USA; 2Royal Free Hospital, London, UK; 3Charité University Medicine Berlin, Berlin, Germany; 4University of Varna and Masaryk, Olomouc, Poland; 5The Methodist Hospital, Houston, TX, USA; 6University Hospital, Varna, Austria; 7First Faculty of Medicine and General Teaching Hospital, Prague, Czech Republic; 8Red Cross Hospital, Cracow, Poland; 9Roiens University Hospital and Vall d’Hebron Institute of Oncology, Barcelona, Spain; 10Western General Hospital, Edinburgh, UK; 11Università Cattolica del Sacro Cuore, Rome, Italy; 12Lips, Las Vegas, USA; 13Beaujon Hospital, Clichy, France.

Background

Data from the CLARINET study of lanreotide depot (also known as autogel) provide robust evidence of anticancer activity with promising potential for maintaining tumor shrinkage and improving survival in patients with pancreatic and intestinal neuroendocrine tumors (NETs).

Here, we present the results of a preplanned, exploratory, stepwise multivariate analysis to identify individual patient circumstances that meaningfully influence on clinical outcomes for individual patients.

Overview of CLARINET study

Exploratory univariate and multivariate analyses

Results

Patients

Conclusions

Acknowledgments

References

Presented at the NANETS Annual Meeting, 15–17 October 2015, Austin, Texas, USA

This study was supported by Ipsen

The proportions of patients in each category for the fourteen potential prognostic factors are shown in Table 1.

The term “metastatic” is used here to refer to tumors that have spread through the lymph system or bloodstream to other locations in the body. This includes tumors that have spread from the primary tumor to lymph nodes, organs, and other tissues.

The relative risk (RR) for each factor in the final multivariate model is displayed in Figure 2. The RR values presented are adjusted for all significant factors identified in the final multivariate model.

Factors identified as prognostic for PFS were hepatic tumor load and time since diagnosis.

Factors evaluated (including tumor grade, prior therapy and time since diagnosis) had no significant impact on outcome.

The risk of PD or death was lowest among patients with no PD at baseline (nevertheless, only 4% of patients had PD).

Hepatic tumor load (% total hepatic volume)

Baseline Ki-67 (vs. ≤ 10%)

Hepatic tumor load

Grade of tumor

Figure 2. Exploratory analysis of potential prognostic factors for PFS: hazard ratios (95% CI) from the final multivariate model alongside those from the individual models.

Hazard ratios (HRs) and upper limits of 95% confidence intervals from the individual Cox PH models were all consistently well below 1 (Figure 2; Table 2). The first category listed for each factor was used as the reference category in the analyses of potential prognostic factors.

Table 2. Exploratory analysis of potential prognostic factors for PFS: final multivariate model.

Figure 1. Univariate analyses of PFS: significant factors.

Baseline FG 1.52 (0.52) 8.7 0.0032 4.57 [1.67 , 12.54]

Hepatic tumor load (% total hepatic volume)

The authors thank the investigators and patients participating in this study. The authors also thank Determined Datasolutions Ltd (Cromford, Derbyshire, UK) for statistical support, and Dr Pipta Sutirman (Cleveland, Ohio, USA) and Carla Zappulla (Cleveland, Ohio, USA) for data management.

PFS = progression-free survival.