Development of a Highly Sensitive and Specific Carboxy-terminal Human Pancreastatin Assay to Monitor Neuroendocrine Tumor Behavior

Thomas M. O’Dorisio 1, Siegfried R. Krutzik 2, Eugene A. Woltering 3, Erika Lindholm 3, Saju Joseph 3, Yi-Zarn Wang 3, J. P. Boudreaux 3, Aaron I. Vinik 4, V.L.W. Go 5, James R. Howe 1, Thor Halfdanarson 1, M. Sue O’Dorisio 1, Gregg Mamikunian 2

1 University of Iowa, Hospitals & Clinics
2 Inter Science Institute
3 Louisiana State University Health Sciences Center
4 Eastern Virginia Medical School
5 University of California.

Presenting author: Thomas M. O’Dorisio, MD Department of Internal Medicine, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, Iowa City, IA 52242 Telephone 319 353-7826. Fax: 319-353-7850. E mail Thomas-odorisio@uiowa.edu

Objective: Pancreastatin is a fragment of the chromogranin A (CgA) molecule. Existing pancreastatin assays, which depend on antibodies which cross-react in varying percents with the larger prohormone, may lack sensitivity and specificity to detect small changes in neuroendocrine tumor volume.

Methods: We developed a highly specific, sensitive pancreastatin assay. The antibody used recognizes the carboxyl terminal of the peptide hormone and was raised against a 17-amino acid porcine pancreastatin fragment with high homology with the carboxy-terminal amino-acids 286-301 of human CGA.

Results: Our assay measures > 95% of circulating pancreastatin levels; has little or no cross-reactivity with CGA, even at plasma concentrations of 1,000 ng/ml; and can detect pancreastatin levels of 17 pg/ml. Inter-assay reproducibility for the pancreastatin RIA was determined from results of three quality control pools in 15 consecutive assays. Coefficients of variation for low, medium, and high pancreastatin levels were < 20%. The sensitivity of serial pancreastatin assays to detect early tumor recurrence was demonstrated in two patients with slowly progressive neuroendocrine tumors and in patients undergoing surgical cytoreduction.

Conclusion: This highly specific, sensitive pancreastatin assay can detect small changes in liver tumor progression and is up to 100-fold more sensitive and specific than CgA assays in the U.S.