Radio-guided Exploration Facilitates Surgical Cytoreduction of Neuroendocrine Tumors

Yi-Zarn Wang DDS, MD¹, ⁴, Abby E Gandolfi, BS., MS. ¹, Lowell B. Anthony MD², ⁴, Richard Campeau MD³, Eugene Woltering MD. ¹, ⁴, and J. Philip Boudreaux MD.¹, ⁴

Louisiana State University Health Sciences Center, the Department of Surgery, Section of Surgical Endocrinology¹, the Department of Medicine, Section of Medical Oncology ², the Department of Radiology, Section of Nuclear Medicine³, and the LSUHSC Stanley S. Scott Cancer Center New Orleans, LA 70112⁴

Introduction: Radio-guided exploration can be an essential tool in the successful cytoreduction of neuroendocrine tumors.

Hypothesis: The choice of the proper radioisotope, dose and time interval between injection and exploration are the major factors responsible for attaining a successful outcome.

Methods: 244 patients undergoing cytoreduction between November 2006 and July 2009 were reviewed to determine optimal dose and interval between injection and exploration and the impact of radio-guided exploration.

Results: 46 patients had gamma probe guided explorations including 3 patients injected with ⁹⁹ᵐTc, 3 patients injected with ¹²³I MIBG (3) and ¹¹¹ In pentetreotide in 40 patients with midgut carcinoid. In 37 out of 40 (93%) of the ¹¹¹ In-pentetreotide guided explorations the gamma probe was deemed helpful in localizing and differentiating tumor from normal tissue. In 5 out of 6 neck and mediastinum explorations the gamma probe was essential for completing a quick, safe and minimally invasive procedures. ¹²³I MIBG was not useful in all three patients included in this review. The optimal doses and interval between injection and exploration of ¹¹¹ In pentetreotide is 6 mCi, injected 6-7 days prior to surgery.

Conclusion: Radio-guided exploration is a useful adjunct and sometime an essential tool for resecting neuroendocrine tumors with the right isotope injected at the optimal dosage and time.