Reproducibility of $[^{68}\text{Ga}]\text{DOTATOC}$ Imaging in Neuroendocrine Tumors

Yusuf Menda, MD1, Laura L. Boles Ponto, PhD1, Thomas O’Dorisio, MD1, Michael K. Schultz, PhD1, G. Leonard Watkins, PhD1, John Sunderland, PhD1, Michael Graham, MD PhD1, David Bushnell, MD 1,4, M. Sue O’Dorisio, MD, PhD1

1University of Iowa Carver College of Medicine, Iowa City, IA; 2Veteran’s Affairs Medical Center Iowa City. 115 VA Newton Road, Iowa City, IA

Background: The potential utility of Gallium-68-labeled DOTA-D-Phe1-Tyr3-octreotide Positron Emission Tomography ($[^{68}\text{Ga}]\text{DOTATOC}$ PET) to effectively monitor response to therapy is dependent on the reproducibility of $[^{68}\text{Ga}]\text{DOTATOC}$ uptake.

Objective: To evaluate the reproducibility of uptake parameters of $[^{68}\text{Ga}]\text{DOTATOC}$ in patients with neuroendocrine tumors by PET.

Methods: Five subjects with metastatic neuroendocrine tumors were imaged with $[^{68}\text{Ga}]\text{DOTATOC}$ PET on two occasions. The interval between two scans was 1-5 days. Dynamic images of the chest or abdomen were obtained for 60 minutes followed by a whole-body PET/CT scan. Maximum pixel standardized uptake values (SUV_{max}) and the average SUV based on 50% thresholding of the maximum pixel SUV (SUV_{mean}) were calculated for up to 10 target lesions for each patient. Time-activity curves were determined for lesions identified on the dynamic frames with arterial plasma input functions generated from regions over major vessels (e.g., aorta). Patlak coefficients (K-Patlak) and K-influx derived from a two-tissue compartment model were calculated for each target volume of interest (VOI). The reproducibility (i.e., percent difference) was calculated for each parameter.
Results: $[^{68}\text{Ga}]\text{DOTATOC}$ uptake in lesions was highly reproducible. The correlation coefficient for SUV_{max} and SUV_{mean} between the first and second scan was 0.99. The mean difference for SUV_{max} and SUV_{mean} between two scans ($n=47$) were $9.8\pm 7.9\%$ and $12.1\pm12.3\%$, respectively. Kinetic parameters ($n=21$) had poorer reproducibility due to variability in the input function determination. The mean difference was $20.9\pm16.2\%$ for $K\text{-Patlak}$ and $31.1\pm33.5\%$ for $K\text{-influx}$.

Conclusions: These data suggest that an 18-24% difference (mean +1 SD) in SUV_{max} or SUV_{mean} is needed to confirm a biological change in tumor uptake of $[^{68}\text{Ga}]\text{DOTATOC}$ between two studies.