Identification of Tumorigenic Cells and Therapeutic Targets in Pancreatic Neuroendocrine Cancers

Geoffrey W. Krampitz1,2; Benson M. George2; Stephen B. Willingham2; Jens-Peter Volkmer2; Kipp A. Weiskopf2; Nadine S. Jahchan2,5; Aaron M. Newman2; Debashis Sahoo2; Anne K. Volkmer2; Norma F. Neff3; Benedetto Passarelli3; Hanlee P. Ji4; Rebecca L. Yanovsky2; Julia K. Nguyen2; Peter J. Schnorr2; Ingrid Ibarra2; Pawel K. Mazur2,5; Siddhartha S. Mitra2; Julien Sage2,5; Brendan C. Visser1; George A. Poultsides1; Stephen R. Quake3; Jeffrey A. Norton1; Irving L. Weissman2,6

1Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
2Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
3Department of Applied Physics and Bioengineering, Stanford University, and Howard Hughes Medical Institute, Stanford, CA, USA
4Department of Medicine and Oncology, Stanford University School of Medicine, Stanford, CA, USA
5Department of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
6Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, CA, USA

Background: Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells are responsible for tumor development, metastasis, and recurrence, and targeting these tumor initiating cells is necessary to eradicate tumors. However, tumor initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs.
Methods: We used 39 human tissue specimens, developed a novel cell line (APL1) from a well-differentiated patient PanNET, created xenograft models using primary tumors transplanted into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice, and utilized a RIP-Cre Rb/p53/p130 genetic model of PanNETs to characterize tumorigenic cells in PanNETs and identify and validate potential therapeutic targets.

Results: Here we profile primary and metastatic well-differentiated tumors from a patient and identify MET as an important growth factor receptor for PanNET growth. Furthermore, we identify a highly tumorigenic cell population within primary patient, well-differentiated, low or intermediate grade PanNETs characterized by increased CD90 expression and ALDHA1 activity. We identify phenotypically distinct cellular subsets in well-differentiated PanNETs and provide evidence for the stem-like properties of the CD90hi cell fraction. All PanNETs analyzed express CD47, a “don’t eat me” signal co-opted by cancers to evade innate immune surveillance. Furthermore, we demonstrate that blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits tumor growth and prevents metastases in vivo.

Conclusions: Our findings provide a foundation for developing therapeutic strategies that eliminate tumor initiating cells in PanNETs and show how deep examination of individual cases can lead to potential therapies.