Evaluation of Uncinate Process Uptake on DOTA-TOC PET/MRI

Thomas Hope1; Miguel Pampaloni2; Eric Nakakura1; Katherine Van Loon1; Emily Bergsland1

1University of California, San Francisco; 2Department of Radiology and Biomedical Imaging

Background: Physiologic uptake in the uncinate process is a common finding when imaging patients with neuroendocrine tumors using somatostatin receptor PET imaging. PET/MRI is a new simultaneous imaging modality that allows for the acquisition of PET and MRI data in the same imaging session. We set forth to evaluate the utility of PET/MRI for the characterization of uncinate process uptake seen on PET.

Methods: 30 consecutive patients imaged using DOTA-TOC PET/MRI were included for evaluation. Patients were injected with an average of 5.4 mCi of Gallium-68 DOTA-TOC and imaged 113 after injection. All imaging was acquired using a gadolinium containing hepatobiliary contrast agent (gadoxetate disodium, Eovist). Images were retrospectively reviewed and compared to additional comparison imaging studies. Uptake was characterized as either being focal or diffuse. SUVmax values were calculated when uptake was noted.

Results: 21 of the 30 patients imaged demonstrated uptake in the uncinate process, with 13 of the 21 patients demonstrating focal uptake. In 20 of the 21 patients, a confident imaging interpretation could be made when comparing to additional studies, and 10 patients were determined to have physiologic uptake, 7 to have nodal disease and 3 to have pancreatic masses. The average SUVmax in negative patients was 15.5, while in patients with disease, the average was 27.9. Diffusion weighted imaging was negative in two patients with pathologic uptake, but was positive in the remaining 8 patients.

Conclusion: Preliminary analysis of DOTA-TOC PET/MRI suggests that MRI imaging can be used to adequately distinguish physiologic uptake for pathologic uptake in the uncinate process. Understanding the role of cross sectional imaging in characterizing uptake is important, given that this is a common finding in patients being imaged using somatostatin receptor PET.